A Frobenius manifold for ℓ -Kronecker quiver

Takumi Otani

Osaka university

April 6, 2021

joint work with Akishi Ikeda, Yuuki Shiraishi and Atsushi Takahashi.

Recall 3 different constructions of Frobenius manifolds:

(GW) Gromov-Witten theory.

(Def.) Deformation theory.

(Weyl) Invariant theory of a Weyl group.

The construction (Weyl) is related with (Def.) by the period mapping.

Example (ADE) (Def.) \longleftrightarrow (Weyl) ADE singularity ADE root system The isomorphism of Frobenius manifold between (Def.) and (Weyl) is induced by the period mapping of the primitive form $\zeta = dz$.

The construction (Weyl) is known a few cases;

- finite Weyl group [Saito, Saito-Yano-Sekiguchi, Dubrovin],
- extended affine Weyl group [Dubrovin-Zhang, Dubrovin-Zhang-Zuo, Zuo],
- elliptic Weyl group [Saito, Satake, Dubrovin, Bertola],

Problem

Establish a construction of Frobenius structures by the invariant theory of a Woul group for a given root system

Weyl group for a given root system.

Let K_{ℓ} be the ℓ -Kronecker quiver:

It is known that an acyclic finite quiver induces a root system of a Kac–Moody Lie algebra. In the case of the ℓ –Kronecker quiver K_{ℓ}

- if $\ell = 1$, $K_1 = A_2$ quiver is of finite type,
- if $\ell = 2$, $K_2 = \widetilde{A_1}$ quiver is of affine type,
- if $\ell \geq 3$, K_{ℓ} is of indefinite type.

The Kac–Moody Lie algebra associated with the ℓ -Kronecker quiver K_{ℓ} with $\ell \geq 3$ is one of the most basic class of indefinite types.

Let \mathcal{D} be a \mathbb{C} -linear triangulated category and $K_0(\mathcal{D})$ the Grothendieck group of \mathcal{D} .

A stability condition (Z,\mathcal{P}) on $\mathcal D$ consists of

- $Z: K_0(\mathcal{D}) \to \mathbb{C}$; group homomorphism (called a central charge),
- $\mathcal{P}(\phi)$: additive full sub categories ($\phi \in \mathbb{R}$),

satisfying some axioms (e.g. Harder-Narasimhan property).

It is shown by Bridgeland that the space of all stability conditions $\operatorname{Stab}(\mathcal{D})$ has the structure of a complex manifold.

Conjecture 1 (Takahashi).

 $f: \mathbb{C}^3 \to \mathbb{C}$: ADE singularity, $F: \mathbb{C}^3 \times S \to \mathbb{C}$: universal unfolding of $f \ (S \cong \mathbb{C}^n)$, $\vec{\Delta}$: Dynkin quiver corresponding to f. Then there should exist a biholomorphic map

 $\operatorname{Stab}(\mathcal{D}^b(\vec{\Delta})) \cong S.$

In particular, $\operatorname{Stab}(\mathcal{D}^b(\vec{\Delta}))$ has a Frobenius structure induced by the Frobenius manifold S constructed by the deformation theory and primitive forms.

Bridgeland–Qiu–Surtherland proved this conjecture in the case of A_2 type. The case of A_n type was proved by Haiden–Katzarkov–Kontsevich.

Conjecture 1 can be generalized to the affine type. Haiden–Katzarkov–Kontsevich also showed the case of $\widetilde{A_{p,q}}$ type. Let (M, η, \circ, e, E) be a Frobenius manifold of rank n and dimension d.

Let $\nabla : \mathcal{T}_M \to \operatorname{End}_{\mathcal{O}_M}(\mathcal{T}_M)$ be the Levi-Civita connection with respect to η . Recall that there exists a flat coordinate system (t^1, \cdots, t^n) and the Frobenius potential $\mathcal{F} \in \mathcal{O}_M$. That is, we have

•
$$e = \partial_1$$
, Ker $\nabla \cong \bigoplus_{i=1}^n \mathbb{C}_M \cdot \partial_i$

• η naturally gives a \mathbb{C}_M -bilinear $\eta : \operatorname{Ker} \nabla \times \operatorname{Ker} \nabla \to \mathbb{C}_M$,

•
$$E = \sum_{i=1}^{n} \left[(1 - q_i)t^i + c_i \right] \partial_i$$
, if $q_i \neq 1$ then $c_i = 0$,
• $(C_{ijk} =) \eta(\partial_i \circ \partial_j, \partial_k) = \partial_i \partial_j \partial_k \mathcal{F}$,

•
$$E\mathcal{F} = (3 - d)\mathcal{F} + ($$
quadratic terms in $t^2, \dots, t^n)$,
where $\partial_i = \frac{\partial}{\partial t^i}$.

We introduce an invariant of Frobenius manifolds. It plays an important role in the Weyl group invariant theory.

Definition 2.

Define a symmetric \mathcal{O}_M -bilinear form $g: \mathcal{T}_M \times \mathcal{T}_M \to \mathcal{O}_M$ by

$$g(\delta, \delta') := \eta(E^{-1} \circ \delta, \delta').$$

It induces a symmetric \mathcal{O}_M -bilinear form on Ω^1_M . We call this symmetric \mathcal{O}_M -bilinear form $g: \Omega^1_M \times \Omega^1_M \to \mathcal{O}_M$ the intersection form of the Frobenius manifold.

On the flat coordinate system (t^1, \cdots, t^n) , the intersection form g is given by

$$g(dt^{i}, dt^{j}) = \sum_{a,b=1}^{n} \eta^{ia} \eta^{jb} E \partial_{a} \partial_{b} \mathcal{F}, \quad \eta^{ia} := \eta(dt^{i}, dt^{a}).$$

Let (M,η,\circ,e,E) be a Frobenius manifold of rank 2 and dimension d. In this case, Frobenius potentials is classified.

Proposition 3 (Dubrovin).

Let (t^1,t^2) be a flat coordinate of the Frobenius manifold (M,η,\circ,e,E) . If $d \neq \pm 1,3$, then the Frobenius potential $\mathcal F$ are given by

$$\mathcal{F}(t^1, t^2) = \frac{\eta_{12}}{2} (t^1)^2 t^2 + c(t^2)^{\frac{3-d}{1-d}},$$

where $\eta_{12} \in \mathbb{C} \setminus \{0\}, \ c \in \mathbb{C}.$

Let $Q=\{Q_0,Q_1\}$ be a connected finite acyclic quiver, and set $Q_0=\{1,\ldots,n\}.$

A matrix $A_Q = (a_{ij})$ of size n defined by

 $a_{ij} := 2\delta_{ij} - (q_{ij} + q_{ji}), \quad q_{ij} := \#\{i \to j \in Q_1\}, \quad \text{for } i, j \in Q_0,$

is called the generalized Cartan matrix of Q.

ℓ-Kronecker quiver

For $Q = K_{\ell}$, the generalized Cartan matrix is given by

$$A_{K_{\ell}} = \begin{pmatrix} 2 & -\ell \\ -\ell & 2 \end{pmatrix}$$

- If $\ell = 1$, A_{K_1} is positive definite matrix (finite type),
- If $\ell = 2$, A_{K_2} is semi-positive (affine type),
- If $\ell \geq 3$, $A_{K_{\ell}}$ is indefinite (indefinite type).

Let us consider a root system associated with the quiver Q:

• Define a free abelian group L by

$$L := \bigoplus_{i=1}^n \mathbb{Z} \cdot \alpha_i.$$

Here, α_i is a formal generator and called the simple root of $i \in Q_0$.

- Define \mathbb{Z} -bilinear form $I: L \times L \to \mathbb{Z}$ by $I(\alpha_i, \alpha_j) := a_{ij}$.
- For each $i \in Q_0$, define a reflection $r_i \in Aut(L, I)$ by

$$r_i(\lambda) := \lambda - I(\lambda, \alpha_i)\alpha_i, \quad \lambda \in L.$$

The Weyl group W associated with the quiver Q is a group generated by reflections:

$$W := \langle r_1, \ldots, r_n \rangle \subset \operatorname{Aut}(L, I).$$

In particular, there is a "special" element c given by $c := r_1 r_2 \cdots r_n \in W$. This element $c \in W$ is called a Coxeter transformation.

Define the set of real roots $\Delta^{\rm re}$ by

$$\Delta^{\mathrm{re}} := \{ w(\alpha_i) \in L \mid w \in W, \ i \in Q_0 \}.$$

In the categorical point of view, the root system associated with \boldsymbol{Q} is given as follows:

Let $\mathcal{D} := \mathcal{D}^b(Q)$ be the derived category of finitely generated $\mathbb{C}Q$ -modules and S_i the simple module corresponding to $i \in Q_0$. Consider

- The Grothendieck group $K_0(\mathcal{D}) \cong \bigoplus_{i \in Q_0} \mathbb{Z}[S_i]$,
- The symmetrized Euler form $I_{\mathcal{D}} := \chi + \chi^T : K_0(\mathcal{D}) \times K_0(\mathcal{D}) \to \mathbb{Z}$,

Then we have $(K_0(\mathcal{D}), I_{\mathcal{D}}) \cong (L, I)$. Moreover,

• The coxeter transformation is $c = -[S_Q] = -\chi^{-1}\chi^T$, where S_Q is the Serre functor of \mathcal{D} .

Let $Q = \vec{\Delta}$ be a Dynkin quiver.

The Weyl group acts on the Cartan subspace $\mathfrak{h} := \operatorname{Hom}_{\mathbb{Z}}(L, \mathbb{C}) \cong \mathbb{C}^n$. In the case, the Coxeter transformation c has finite order. Hence, define $h \in \mathbb{Z}_{\geq 1}$ by the order of c and call it the Coxeter number.

Theorem 4 (Saito, Saito-Yano-Sekiguchi, Dubrovin).

There exists a unique Frobenius structure (η, \circ, e, E) of rank n and dimension $d = 1 - \frac{2}{h}$ on \mathfrak{h}/W satisfying

- **1** The intersection form g coincides with the Cartan matrix $A_{\vec{\Delta}}$.
- **2** There exist W-invariant homogeneous polynomials t^1, \dots, t^n such that (t^1, \dots, t^n) is a (global) flat coordinate system of the Frobenius manifold.
- **③** The Euler vector field E is given by

$$E = \sum_{i=1}^{n} \frac{\deg t^{i}}{h} t^{i} \frac{\partial}{\partial t^{i}}.$$

The Frobenius structure in Theorem 4 is based on Chevalley's Theorem;

Theorem 5 (Chevalley's Theorem).

Let $\alpha_i^* \in \mathfrak{h}$ be the dual (fundamental co-weight) of $\alpha_i \in \mathfrak{h}^* (:= L \otimes_{\mathbb{Z}} \mathbb{C})$ and (x^1, \dots, x^n) the linear coordinate with respect to $\{\alpha_1^*, \dots, \alpha_n^*\}$. We have

• The W-invariant subring $\mathbb{C}[\mathfrak{h}]^W$ of the polynomial ring $\mathbb{C}[\mathfrak{h}] \cong \mathbb{C}[x^1, \cdots, x^n]$ is generated by n homogeneous polynomials p^1, \cdots, p^n such that

$$h = \deg p^1 > \deg p^2 \ge \dots \ge \deg p^{n-1} > \deg p^n = 2.$$

- **2** $\{\deg p^1, \ldots, \deg p^n\}$ does not depend on the choice of p^1, \cdots, p^n .
- **③** The eigenvalues of the Coxeter transformation c are

$$\exp\left(2\pi\sqrt{-1}\frac{\deg p^1-1}{h}\right),\cdots,\exp\left(2\pi\sqrt{-1}\frac{\deg p^n-1}{h}\right)$$

We obtain the Frobenius structrue (η, \circ, e, E) in Theorem 4 as follows;

- (unit vector field e) $e := \frac{\partial}{\partial p^1}$
- (Euler vector field E)

$$E:=\sum_{i=1}^n \frac{1}{h} x^i \frac{\partial}{\partial x^i} = \sum_{i=1}^n \frac{\deg p^i}{h} p^i \frac{\partial}{\partial p^i}$$

• (metric η) Let $g: \Omega^1_{\mathfrak{h}} \times \Omega^1_{\mathfrak{h}} \to \mathcal{O}_{\mathfrak{h}}$ be a non-degenerated $\mathcal{O}_{\mathfrak{h}}$ -bilinear form induced by $I: L \times L \to \mathbb{Z}$ under a natural identification of $T^*_x \mathfrak{h} \cong \mathfrak{h}^*$, that is,

$$g(dx^i, dx^j) := I(\alpha_i, \alpha_j).$$

It induces a symmetric $\mathcal{O}_{\mathfrak{h}/W}$ -bilinear form $g: \Omega^1_{\mathfrak{h}/W} \times \Omega^1_{\mathfrak{h}/W} \to \mathcal{O}_{\mathfrak{h}/W}$. Then, we define

$$\eta := \operatorname{Lie}_{e} g.$$

In order to define the product structure, we need the following

Theorem 6 (Saito-Yano-Sekiguchi).

Let ∇ be the Levi–Civita connection with respect to η . There exists ∇ -flat W-invariant homogeneous polynomials t^1, \dots, t^n satisfying the conditions of Chevalley's Theorem.

• (product structure \circ) Let ∇ be the Levi-Civita connection with respect to $g: \Omega^1_{\mathfrak{h}/W} \times \Omega^1_{\mathfrak{h}/W} \to \mathcal{O}_{\mathfrak{h}/W}$. The product structure \circ is defined by

$$C_{ij}^k := \frac{h}{\deg t^k - 1} \sum_{a=1}^n \eta\left(\frac{\partial}{\partial t^i}, \frac{\partial}{\partial t^a}\right) \cdot g\left(dt^a, \nabla_{\frac{\partial}{\partial t^j}} dt^k\right)$$

for $i, j, k \in Q_0$, and

$$\frac{\partial}{\partial t^i} \circ \frac{\partial}{\partial t^j} := \sum_{k=1}^n C_{ij}^k \frac{\partial}{\partial t^k}$$

Consider the ℓ -Kronecker quiver $Q = K_{\ell}$ with $\ell \geq 3$. Then c does not have finite order. What is h in the case of ℓ -Kronecker?

Let ρ be the spectral radius of the Coxeter transformation c:

$$\rho = \frac{\ell^2 - 2 + \sqrt{\ell^4 - 4\ell^2}}{2} \ (>1).$$

Then, the diagonalization of c is given by

$$\begin{pmatrix} \rho & 0\\ 0 & \rho^{-1} \end{pmatrix} = \begin{pmatrix} \exp\left(2\pi\sqrt{-1} \cdot \frac{\log\rho}{2\pi\sqrt{-1}}\right) & 0\\ 0 & \exp\left(-2\pi\sqrt{-1} \cdot \frac{\log\rho}{2\pi\sqrt{-1}}\right) \end{pmatrix}.$$

Define

$$h := \frac{2\pi\sqrt{-1}}{\log\rho} \in \mathbb{C} \backslash \mathbb{R}.$$

Hence, the eigenvalues of c are given by

$$\exp\left(2\pi\sqrt{-1}\cdot\frac{h-1}{h}\right),\quad \exp\left(2\pi\sqrt{-1}\cdot\frac{1}{h}\right).$$

It is an analogue of the condition (3) in Theorem 5. Based on this, we expect that there exist *W*-invariant homogeneous polynomials t^1 and t^2 satisfying

"
$$\deg t^1 = h$$
", $\deg t^2 = 2$.

In order to define the polynomial t^1 satisfying $\deg t^1 = h$, we consider a space X instead of the Cartan subalgebra \mathfrak{h} .

Define the set of imaginary roots Δ^{im} by

$$\Delta^{\operatorname{im}} := \{ w(\alpha) \in L \mid w \in W, \ \alpha \in L \text{ s.t. } I(\alpha, \alpha_i) \le 0 \}.$$

Definition 7 (Ikeda).

Let \mathcal{I} be the imaginary cone, namely, the closure of the convex hull of $\Delta^{im}_+ \cup \{0\}.$

Define an open subset $X \subset \mathfrak{h}$ by

$$X := \mathfrak{h} \setminus \bigcup_{\lambda \in \mathcal{I} \setminus 0} H_{\lambda}$$

and a regular subset $X^{\mathrm{reg}} \subset X$ by

$$X^{\operatorname{reg}} := X \setminus \bigcup_{\alpha \in \Delta_+^{\operatorname{re}}} H_\alpha,$$

where $H_{\lambda} := \{Z \in \mathfrak{h} \mid Z(\lambda) = 0\}$ is the orthogonal complex hyperplane of $\lambda \in \mathfrak{h}^* = L \otimes_{\mathbb{Z}} \mathbb{C}$.

The following theorem is one of the reasons why the space X is suitable:

Theorem 8 (Ikeda).

Let Q be an acyclic connected finite quiver and \mathcal{D}_Q be the derived category of finite dimensional nilpotent $\Gamma_2 Q$ -modules. Then there is a covering map

 $\operatorname{Stab}^{\circ}(\mathcal{D}_Q) \longrightarrow X^{\operatorname{reg}}/W,$

where $\operatorname{Stab}^{\circ}(\mathcal{D}_Q)$ is a connected component of $\operatorname{Stab}(\mathcal{D}_Q)$.

In the ADE case, it is known that $\operatorname{Stab}^{\circ}(\mathcal{D}_{\vec{\Delta}}) \to \mathfrak{h}^{\operatorname{reg}}/W$ is the universal covering map.

In our case, X is given by

$$X = \mathbb{C}^2 \setminus \bigcup_{0 \le \lambda \le \infty} \{ (x^1, x^2) \in \mathbb{C}^2 \mid x^1 = -\lambda x^2 \}$$

after the change of coordinates along with the imaginary cone \mathcal{I} . The Weyl group $W = \langle r_1, r_2 \rangle$ action on the coordinate (x^1, x^2) of X (or \mathfrak{h}) is

$$r_1 \cdot (x^1, x^2) = (\nu^{-1} x^2, \nu x^1)$$
$$r_2 \cdot (x^1, x^2) = (\nu x^2, \nu^{-1} x^1),$$

where $\nu = \sqrt{\rho}$.

Roughly speaking, W-invariant functions we expect are

$$\begin{cases} t^1 &= (x^1)^h - (x^2)^h \\ t^2 &= x^1 x^2, \end{cases}$$

where $x^h := \exp(h \log(x)).$ Note that t^1 is a multi-valued function on X.

Lemma 9.

The universal cover \widetilde{X} of X is given by

$$\widetilde{X} = \begin{cases} (y^1, y^2) \in \mathbb{C}^2 \mid \left| \operatorname{Im} y^1 - \operatorname{Im} y^2 \right| < \pi \\ (y^1, y^2) & \longmapsto \quad (e^{y^1}, e^{y^2}) \end{cases}$$

Define the $W\text{-}\mathrm{action}$ on \widetilde{X} by

$$r_1 \cdot (y^1, y^2) = (y^2 - \log \nu, \ y^1 + \log \nu)$$
$$r_2 \cdot (y^1, y^2) = (y^2 + \log \nu, \ y^1 - \log \nu),$$

then the covering map in the above Lemma is W-equivariant.

Definition 10.

Define a complex analytic space $\widetilde{X}/\!\!/W$ as follows:

- The underlying space is the quotient space \widetilde{X}/W and denote by $\pi:\widetilde{X}\to\widetilde{X}/W$ the quotient map .
- The structure sheaf is $\mathcal{O}_{\widetilde{X}/\!\!/W} := \pi_* \mathcal{O}_{\widetilde{X}}^W$, where $\mathcal{O}_{\widetilde{X}}^W$ is the *W*-invariant subsheaf of $\mathcal{O}_{\widetilde{X}}$.

It is shown by Dimitrov–Katzarkov that $\operatorname{Stab}(\mathcal{D}^b(K_\ell)) \cong \mathbb{C} \times \mathbb{H}$ as complex manifolds, where $\mathbb{H} = \{z \in \mathbb{C} \mid |\operatorname{Im}(z)| > 0\}.$

Proposition 11.

 $\widetilde{X}/\!\!/W$ has the structure of a complex manifold. Moreover, there exists an isomorphism

$$\widetilde{X}/\!\!/W \cong \operatorname{Stab}(\mathcal{D}^b(K_\ell))$$

as complex manifolds.

We expect that $\widetilde{X}/\!\!/W$ has a Frobenius structure in the points of view of Conjecture 1 and Theorem 8.

Main results

Main Theorem (Ikeda-O-Shiraishi-Takahashi).

There exists a unique Frobenius structure (η, \circ, e, E) of rank 2 and dimension $1 - \frac{2}{h}$ on $\widetilde{X}/\!\!/W$ satisfying

() The intersection form g coincides with the generalized Cartan matrix $A_{K_{\ell}}$.

2 The functions (t^1, t^2) defined by

$$t^{1} = e^{hy^{1}} - e^{hy^{2}}$$
$$t^{2} = e^{y^{1} + y^{2}}$$

are W-invariant homogeneous and forms a flat coordinate system of the Frobenius structure.

 \bigcirc The Euler vector field E is given by

$$E = t^1 \frac{\partial}{\partial t^1} + \frac{2}{h} t^2 \frac{\partial}{\partial t^2}.$$

Main Theorem is an analogue of Theorem 4 in the case of the $\ell\text{-}\mathsf{Kronecker}$ quiver.

This Frobenius structure (η, \circ, e, E) is constructed in the same way of the case of finite Weyl group.

In particular, the Frobenius potential is given by

$$\mathcal{F} = -rac{1}{2h} \left(t^{1}
ight)^{2} t^{2} + rac{1}{h^{2} - 1} \left(t^{2}
ight)^{h+1}.$$

The dimension $d = 1 - \frac{2}{h}$ of the Frobenius manifold is not real number.

Reference :

- [1] T. Bridgeland, Y. Qiu and T. Sutherland, Stability conditions and the A2 quiver, arXiv:1406.2566v4
- G. Dimitrov, L. Katzarkov, Bridgeland stability conditions on wild Kronecker quivers. Adv. Math. 352 (2019), 27–55.
- [3] B. Dubrovin, Geometry of 2d topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, pp. 120–348.
- B. Dubrovin and Y. Zhang, Extended Affine Weyl Groups and Frobenius Manifolds, Compositio Math. 111 (1998) 167–219.
- [5] F. Haiden, L. Katzarkov and M. Kontsevich, Flat surfaces and stability structures, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 247–318.
- [6] A. Ikeda, Stability conditions for preprojective algebras and root systems of Kac-Moody Lie algebras, arXiv:1402.1392v1
- [7] Y. Ishibashi, Y. Shiraishi, A. Takahashi Primitive forms for affine cusp polynomials. Tohoku Math. J. (2) 71 (2019), no. 3, 437–464.
- [8] K. Saito, T. Yano and J. Sekiguchi, On a certain generator system of the ring of invariants of a finite reflection group, Comm. Algebra 8 (1980), no. 4, 373–408.
- [9] K. Saito, Period mapping associated to a primitive form, Publ. RIMS, Kyoto Univ. 19 (1983) 1231–1264.
- [10] K. Saito, On a linear structure of the quotient variety by a finite reflexion group, Publ. RIMS 1993 Volume 29 Issue 4 Pages 535–579.
- [11] K. Saito, A. Takahashi, From primitive forms to Frobenius manifolds. From Hodge theory to integrability and TQFT tt*-geometry, 31–48, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008.
- [12] I. Satake, Frobenius manifolds for elliptic root systems, Osaka J. Math. 47 (2010) 301-330.
- [13] I. Satake, A. Takahashi Gromov-Witten invariants for mirror orbifolds of simple elliptic singularities. Ann. Inst. Fourier (Grenoble) 61 (2011), no. 7, 2885–2907.
- [14] Y. Shiraishi, A. Takahashi and K. Wada, On Weyl Groups and Artin Groups Associated to Orbifold Projective Lines, Journal of Algebra, 453 (2016), 249–290.
- [15] A. Takahashi, Matrix Factorizations and Representations of Quivers I, arXiv:math/0506347
- [16] A. Takahashi, A Brief Introduction to Frobenius Manifolds, Virtual Introductory Lectures on Frobenius Manifolds, March 30, 2021.

Thank you for your attention !