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Background : Weyl group invariant theory

Recall 3 different constructions of Frobenius manifolds:
(GW) Gromov-Witten theory.
(Def.) Deformation theory.
(Weyl) Invariant theory of a Weyl group.
The construction (Weyl) is related with (Def.) by the period mapping.

Example (ADE)

(Def.) — (Weyl)
ADE singularity ADE root system

The isomorphism of Frobenius manifold between (Def.) and (Weyl) is induced

by the period mapping of the primitive form ¢ = dz.
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The construction (Weyl) is known a few cases;
o finite Weyl group [Saito, Saito—Yano—Sekiguchi, Dubrovin],
o extended affine Weyl group [Dubrovin—Zhang, Dubrovin—Zhang—Zuo, Zuo],

o elliptic Weyl group [Saito, Satake, Dubrovin, Bertola],

Problem

Establish a construction of Frobenius structures by the invariant theory of a

Weyl group for a given root system.
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Let K, be the {(~Kronecker quiver:
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It is known that an acyclic finite quiver induces a root system of a Kac—Moody

Lie algebra. In the case of the {~Kronecker quiver K,
e if { =1, K1 = As quiver is of finite type,
0 if{ =2 Ky = ;4: quiver is of affine type,

e if £ >3, K, is of indefinite type.

The Kac—Moody Lie algebra associated with the ¢-Kronecker quiver K, with

£ > 3 is one of the most basic class of indefinite types.
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Background : Bridgeland stability condition

Let D be a C-linear triangulated category and Ko(D) the Grothendieck group
of D.

A stability condition (Z,P) on D consists of
e Z : Ko(D) — C; group homomorphism (called a central charge),
e P(¢): additive full sub categories (¢ € R),

satisfying some axioms (e.g. Harder—Narasimhan property).

It is shown by Bridgeland that the space of all stability conditions Stab(D) has

the structure of a complex manifold.
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Conjecture 1 (Takahashi).

f: C® = C: ADE singularity,
F :C? x S — C: universal unfolding of f (S = C"),
A: Dynkin quiver corresponding to f.

Then there should exist a biholomorphic map
Stab(D°(A)) = 8.

In particular, Stab(D(A)) has a Frobenius structure induced by the Frobenius

manifold S constructed by the deformation theory and primitive forms.

Bridgeland—Qiu—Surtherland proved this conjecture in the case of Az type.
The case of A,, type was proved by Haiden—Katzarkov—Kontsevich.

Conjecture 1 can be generalized to the affine type.

Haiden—Katzarkov—Kontsevich also showed the case of ;1;; type.
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Intersection form of a Frobenius manifold

Let (M,n,0,e, E) be a Frobenius manifold of rank n and dimension d.

Let V : Tar — Endo,, (Tar) be the Levi-Civita connection with respect to 7.
Recall that there exists a flat coordinate system (t!,--- ,¢™) and the Frobenius

potential F € Ops. That is, we have

0o e=01, KaV=@P!  Cr -0

@ 7 naturally gives a Cys-bilinear 1 : KerV x KerV/ — Cyy,
E=3", [(1 - qi)ti + ci] 0;, if ¢i # 1 then ¢; =0,
(Cijr =) 1(0i 0 05, 0)) = 0;0; 01 F,
o EF = (3 —d)F + (quadratic terms in %, .- [ t™),

where 9; =

9
oti’

7/28



We introduce an invariant of Frobenius manifolds. It plays an important role in

the Weyl group invariant theory.

Definition 2.

Define a symmetric Or-bilinear form g : Tar X Tar — On by
g(6,8") :==n(E~" 06,5).

It induces a symmetric Ops-bilinear form on Q3,. We call this symmetric
Os-bilinear form g : Q% x Qi; — Our the intersection form of the Frobenius

manifold.

On the flat coordinate system (¢!, --- ,t"), the intersection form g is given by

g(dt*, dt?) = Z NP E0.0, F, 1" :=n(dt’,dt").

a,b=1
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Frobenius manifold of rank 2

Let (M,n,0,e, E) be a Frobenius manifold of rank 2 and dimension d. In this

case, Frobenius potentials is classified.

Proposition 3 (Dubrovin).

Let (t',t?) be a flat coordinate of the Frobenius manifold (M,n,0,e, E). If
d # +1, 3, then the Frobenius potential F are given by

FE, 1) = T2 + ) 2,
where 112 € C\{0}, c € C.
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Quiver and root system

Let @ = {Qo, @1} be a connected finite acyclic quiver, and set
Qo = {1,...,TL}.

A matrix Ag = (a;;) of size n defined by
aij i=20i; — (qij + qji), @i =#{i > j € Qu}, fori,j€ Qo,
is called the generalized Cartan matrix of Q.

{-Kronecker quiver

For Q = K, the generalized Cartan matrix is given by

2 4
A, = ( ) |
—£ 2

e If £ =1, Ak, is positive definite matrix (finite type),
o If £ =2, Ak, is semi-positive (affine type),

e If £ >3, Ak, is indefinite (indefinite type).
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Let us consider a root system associated with the quiver Q:

@ Define a free abelian group L by

L= éZ Q.
i=1

Here, o is a formal generator and called the simple root of i € Qo.
o Define Z-bilinear form I : L x L — Z by I(a, aj) == aij.

@ For each i € Qo, define a reflection r; € Aut(L, ) by

ri(A) ;= A =TI\, a;)e;, A€ L.
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The Weyl group W associated with the quiver ) is a group generated by
reflections:

W= (r1,...,rn) C Aut(L,I).

In particular, there is a “special” element c given by ¢ :=rire---7, € W. This

element ¢ € W is called a Coxeter transformation.

Define the set of real roots A™ by

A :={w(a;) eL|weW, i €Qo}.
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Root system via derived category

In the categorical point of view, the root system associated with @ is given as

follows:

Let D := D"(Q) be the derived category of finitely generated CQ-modules and
S; the simple module corresponding to i € Qo.

Consider

@ The Grothendieck group Ko(D) = D, Z[Si],

o The symmetrized Euler form Ip := x + x* : Ko(D) x Ko(D) — Z,
Then we have (Ko (D), Ip) = (L, I). Moreover,

o The coxeter transformation is ¢ = —[Sg] = —x~*x”, where Sg is the

Serre functor of D.
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Case of ADE type

Let Q = A be a Dynkin quiver.

The Weyl group acts on the Cartan subspace b := Homgz(L,C) = C". In the
case, the Coxeter transformation c has finite order. Hence, define h € Z> by

the order of ¢ and call it the Coxeter number.

Theorem 4 (Saito, Saito—Yano—Sekiguchi, Dubrovin).

There exists a unique Frobenius structure (1,0, e, E) of rank n and dimension
d=1- % on h/W satisfying

© The intersection form g coincides with the Cartan matrix Ax.

@ There exist W -invariant homogeneous polynomials t*,--- | t" such that

(t',...,t") is a (global) flat coordinate system of the Frobenius manifold.

© The Euler vector field E is given by

" degt® ;
E= .,
; n o
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The Frobenius structure in Theorem 4 is based on Chevalley's Theorem;

Theorem 5 (Chevalley’s Theorem).

Let o € b be the dual (fundamental co-weight) of a; € h*(:= L ®z C) and

(x,--- ,x™) the linear coordinate with respect to {a}, - ,a}}. We have

© The W-invariant subring C[h]"V of the polynomial ring
C[p] = C[z?,--- ,x"] is generated by n homogeneous polynomials
pt, .- ,p" such that

h=degp' > degp® > - > degp" " > degp” = 2.

@ {degp',...,degp"} does not depend on the choice of p*,---  p".

© The eigenvalues of the Coxeter transformation c are

1 no_
exp <27r\/—1 deth> ,c e, €XP (271’\/—1 %)
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We obtain the Frobenius structrue (7,0, e, E) in Theorem 4 as follows;

o (unit vector field e) e:= —

o (Euler vector field E)

o 1,0 degpii(’)
B 5w =L h Py

i=1 i=1

o (metric n) Let g : Qé X Q% — Oy be a non-degenerated Oy-bilinear form
induced by I : L x L — Z under a natural identification of Ty h = ™, that
is,

g(da’, dz?) == I(ou, a;).

It induces a symmetric Oy w-bilinear form g : Qg ;X — Opyw.
Then, we define

n := Liecg.
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In order to define the product structure, we need the following

Theorem 6 (Saito—Yano—Sekiguchi)
Let V] be the Levi-Civita connection with respect to 1. There exists V] -flat

W -invariant homogeneous polynomials t*,--- | t" satisfying the conditions of

Chevalley’s Theorem.

o (product structure o) Let V be the Levi-Civita connection with respect to

9:Qyw X QU yw — Opyw. The product structure o is defined by

b h N (0 0 a k
Cij = degtr —1 ;77 (815“ 8t“> g (dt ’V%dt )

for i, 7,k € Qo, and

6# (')tJ Z O” atk
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Case of the /—Kronecker quiver

Consider the (—Kronecker quiver Q = K, with £ > 3. Then ¢ does not have

finite order. What is h in the case of /—Kronecker?

Let p be the spectral radius of the Coxeter transformation c:

I B

1).
: 1)
Then, the diagonalization of ¢ is given by

log p

2my/—1 - 0
(P 0 ) _ exp( T 277\/—1)
0 pt 0 (72 s Y )
xp T 27T\/j
Define
hi= 2V c R

log p
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Hence, the eigenvalues of ¢ are given by
h—1 1
exp | 2mv/—1 - ) exp | 2mv/—1 - e

It is an analogue of the condition (3) in Theorem 5.
Based on this, we expect that there exist W-invariant homogeneous

polynomials t* and ¢? satisfying
“degt' =h", degt®=2.

In order to define the polynomial t! satisfying degt! = h, we consider a space

X instead of the Cartan subalgebra b.
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Define the set of imaginary roots A'™ by

A™ = {w(a)eL|weW, aecLst I(a,a;) <0}

Definition 7 (lkeda).

Let T be the imaginary cone, namely, the closure of the convex hull of
Ay {o}.

Define an open subset X C h by

X:=b\ (J H

AET\O

and a regular subset X**® C X by

x*¢:=x\ |J Ha,

erAff

where Hy :={Z € b | Z(\) = 0} is the orthogonal complex hyperplane of
AEh =LR®zC.
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The following theorem is one of the reasons why the space X is suitable:

Theorem 8 (lkeda).

Let QQ be an acyclic connected finite quiver and Dg be the derived category of

finite dimensional nilpotent I'2QQ-modules. Then there is a covering map
Stab®(Dg) — X8 /W,
where Stab®(Dg) is a connected component of Stab(Dg).

In the ADE case, it is known that Stab®(Dg) — h™ /W is the universal

covering map.
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In our case, X is given by
x=c* {J {@'2*)eC?|a' =-2?
0<A<oc0

after the change of coordinates along with the imaginary cone Z. The Weyl

group W = (r1,rs) action on the coordinate (z',z?) of X (or h) is

where v =, /p.
Roughly speaking, W-invariant functions we expect are

where z" := exp(hlog(z)).

Note that ¢! is a multi-valued function on X.
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Lemma 9.

The universal cover X of X is given by
X = {',9y*) €eC? | |Imy' —Imy?| <7} —> X
(', y%) — (eyl,ey )
Define the W-action on X by

r-(y'y?) = (v —logv, y' +logv)
ra - (y',y%) = (v* +logw, y' —logv),

then the covering map in the above Lemma is W-equivariant.
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Definition 10.
Define a complex analytic space X JJW as follows:

o The underlying space is the quotient space )?/W and denote by
7 X — )?/W the quotient map .

w

@ The structure sheaf is 0)”(//W = 7r*(9)~( , where O)V{ is the W -invariant

subsheaf of O .

It is shown by Dimitrov—Katzarkov that Stab(D°(K,)) = C x H as complex
manifolds, where H = {z € C | [Im(z)| > 0}.

Proposition 11.

X J/W has the structure of a complex manifold. Moreover, there exists an

isomorphism

X /W = Stab(D"(K))
as complex manifolds.

We expect that )~(//W has a Frobenius structure in the points of view of

Conjecture 1 and Theorem 8.
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Main results

Main Theorem (lkeda-O-Shiraishi-Takahashi).

There exists a unique Frobenius structure (1,0, e, E) of rank 2 and dimension
2 = P
1— 7 on X JW satisfying
@ The intersection form g coincides with the generalized Cartan matrix Ak,.

@ The functions (t',t?) defined by

are W-invariant homogeneous and forms a flat coordinate system of the
Frobenius structure.
© The Euler vector field E is given by

_p0 220
F=ton 1t o
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Main Theorem is an analogue of Theorem 4 in the case of the ¢/-Kronecker

quiver.

This Frobenius structure (7,0, e, E) is constructed in the same way of the case
of finite Weyl group.

In particular, the Frobenius potential is given by

_ i 1\2 ,2 1 2\ h+1
ff—Qh(t) t +h2_1(t) :

The dimension d =1 — 2 of the Frobenius manifold is not real number.
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Thank you for your attention !



